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Randomised allocation of vaccine or placebo is the
preferred method to assess the effects of the vaccine on
clinical outcomes relevant to the individual patient. In the
absence of phase 3 trials using clinical end points, notably
post-influenza complications, alternative non-experimental
designs to evaluate vaccine effects or safety are often
used. The application of these designs may, however, lead
to invalid estimates of vaccine effectiveness or safety. As
patients with poor prognosis are more likely to be
immunised, selection for vaccination is confounded by
patient factors that are also related to clinical end points.
This paper describes several design and analytical
methods aimed at limiting or preventing this confounding
by indication in non-experimental studies. In short,
comparison of study groups with similar prognosis, restric-
tion of the study population, and statistical adjustment for
dissimilarities in prognosis are important tools and should
be considered. Only if the investigator is able to show that
confounding by indication is sufficiently controlled for,
results of a non-experimental study may be of use to direct
an evidence based vaccine policy.

The health economic impact of influenza epidemics is

considerable.1–3 In most western countries, the use of

inactivated influenza vaccines by vulnerable patient

groups is advocated to prevent complications.4 However,

uptake of the vaccine remains low, especially in those who

need it most.4–6 Disbelief in the vaccine’s effects on clinical

outcomes relevant to the individual patient—that is, post-

influenza complications—may be one of the major reasons for

disappointing immunisation rates.3 4 6–8

THE PREVENTION OF INFLUENZA COMPLICATIONS
BY VACCINATION: RANDOMISED CONTROLLED
TRIALS
The clinical effects of influenza vaccines on reduction of major

symptomatic events or death should preferably be studied in

phase 3 randomised controlled trials (RCT).9 Provided that the

sample size is large enough, randomised assignment of

patients to vaccine or placebo enables valid assessment of vac-

cine effects through comparing the occurrence of outcomes in

both patient groups with similar prognosis. Such trials can be

conducted among various segments of the patient population

and may give insight into positive as well as negative clinical

consequences of immunisation in daily practice. Results of

large enough trials in which the primary end point is a clini-

cal outcome rather than a surrogate end point (for example,

immune response) provide crucial information on the true

impact of these preventive measures and are best suited to

guide healthcare decisions.10 11

However, scientists face many obstacles when planning a

RCT for clinical evaluation of influenza vaccines. Firstly and

foremost, as the incidence of influenza related complications

or adverse effects is low these trials would entail great expense

because large numbers of patients are required.1 12 Secondly,

several influenza seasons may need to be observed as the

virulence of circulating influenza viral types is highly variable

and unpredictable.1 6 13 Finally, once the vaccine has been

licensed ethical concerns may be raised to further evaluate its

effectiveness in placebo controlled studies, especially when

persons at high risk for complications are involved. Because of

these limitations, post-licensing or phase 4 studies evaluating

the vaccine’s clinical effectiveness or safety usually use a non-

experimental approach, notably a case-control or cohort

design.9 The vaccine’s effectiveness is interpreted as the

percentage reduction in risk of influenza associated complica-

tions attributable to vaccination, given in percentage by 1−RR

in cohort studies or 1−OR in case-control studies.3 The main

difference between experimental and non-experimental de-

signs lies in the absence of random allocation of the interven-

tion, for example, vaccination, by the investigator.

EFFECTIVENESS OF INFLUENZA VACCINATION:
NON-EXPERIMENTAL STUDIES
One of the important problems encountered in non-

experimental evaluation of intended drug effects is the “natu-

ral” presence of incomparability of prognosis among subjects

receiving the drug and those who do not.14 In non-

experimental influenza vaccine studies, the vaccine group

typically comprises patients with more severe disease or (per-

ceived) higher risk, either as a result of self selection or physi-

cian preference, than the non-vaccinated (control) group.15 16

In contrast, those with a contraindication for the intervention

will usually be found in the control group only. Thus, selection

of exposure is confounded with patient factors, both clinical

and non-clinical, which are also related to (detection of) the

outcome. This phenomenon may equally apply to qualitative

(absence/presence) as well as quantitative (dosing schedule)

aspects of exposure and is usually referred to as “confounding

by (contra)indication” or “channelling”.14 17 18 Crude, unad-

justed, results of non-experiments may therefore lead to

invalid inference regarding influenza vaccine effectiveness

and potential side effects—that is, underestimation of both

beneficial and adverse effects in most circumstances. The obli-

gation of the investigator is to design and analyse the study in

such a way that reduction or removal of this type of bias can

be achieved.

PREVENTION OF CONFOUNDING BY INDICATION:
STUDY DESIGN ISSUES
Preventing or limiting confounding by indication can be

achieved in the design and data analytical phase of

case-control and cohort studies (see also box 1). In designing
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a non-experimental study of vaccine effectiveness, valid infer-

ences on preventive effects can be drawn in those situations in

which patient groups are compared who have similar

indications but have undergone different interventions. These

designs could be viewed as “natural experiments”. Hypotheti-

cally, patients receiving the influenza vaccine because their

general practitioner (GP) believes in it and is able to organise

the intervention programme (intervention group) could be

compared with a group of patients listed with a GP who does

not immunise his patients against influenza (control group).

Such comparison groups may however be difficult to identify

in one healthcare system. Another, less preferred, design

option constitutes an ecological study in which vaccine effects

among patients residing in different areas are compared.

Similarity of ecological comparison groups highly depends on

distribution of patient characteristics in different areas. In this

respect, a design in which the incidence of influenza

associated complications of a historical control group of

patients before the introduction of the influenza vaccine is

compared with the incidence of such complications in patients

after its introduction (intervention group) in one area may be

a better option. Such a design, however, risks the incompara-

bility of influenza seasons.

Alternatively, the study domain could be restricted to

patients with a more or less similar prognosis such as institu-

tionalised elderly patients.19 Strict admission criteria could

however limit the generalisibility and applicability of results to

other segments of the population, while incomparability of

comparison groups and residual confounding may persist.

Stratification of the study population on levels of important

confounding variables, like for example age, and within stra-

tum comparisons also enhances internal validity.20

Another option consists of individual pair matching of vac-

cinated and non-vaccinated subjects within strata of impor-

tant prognostic variables sometimes referred as “quasi-

experiment”. This technique was used in a non-experimental

evaluation of the effects of placement of ventilation tubes and

proved to reduce confounding bias.21 The design of a

quasi-experiment is, however, costly as it requires sufficiently

large numbers of patients within each stratum. Except for

restriction and stratification, to our knowledge none of the

other design options mentioned above has been applied in

non-experimental evaluation of currently used influenza vac-

cines.

Prevention of confounding by indication: data
analytical issues
Independent of the study design, statistical adjustment for

dissimilarities in prognostic factors between the patient

groups receiving and not receiving the vaccine can be applied

to improve validity.1 3 22–24 A prerequisite is that valid and

precise data are obtained through the design used to estimate

the patient’s prognosis without too many missing data. In

other words, to optimise statistical adjustment, the prognosis

of each patient should be measured by as many valid

indicators as possible to permit adjustments afterwards. In

primary care, for example, the presence of current disease as

indicated by presence of GP consultations in the year preced-

ing the study, also referred as “active patient”, is essential to

permit valid adjustment of potential confounding. In the ideal

situation in which all prognostic patient features can be

measured, the exact degree of bias can be quantified and used

to draw valid conclusions from the data. In practice, this is

usually impossible because of cost restrictions and difficulty,

and in that case residual confounding or hidden bias cannot

be ruled out. However, although in many non-experimental

studies residual confounding may be present, it can be shown

that there are limits to the extent of mathematical explanation

by this unmeasured confounding. Its putative effects mainly

depend on the expected prevalence of the unobserved

variable(s), and its associations with vaccination and out-

come. Investigators should therefore always reflect on the

potential magnitude of the impact of such bias on the

effectiveness estimate for example by using sensitivity

analysis.17 26

In general, three main methods for statistical adjustments
can be applied: (1) statistical control of confounding variables
in a multivariable regression model14 18; (2) subclassifying or
matching patients on levels of a so called “propensity
score”17 25–27; and (3) the use of an instrumental variable to
enable statistical pseudo randomisation and to account for any
residual confounding.28

The first option is commonly used and comprises several
steps: identification of confounders in the dataset, univariate
stratification of exposure groups on levels of the confounder to
estimate the vaccine effectiveness estimate adjusted for this
single variable (for example, age) and multivariable control
including confounding variables that collectively influence the
estimated relation between exposure and outcome in the
modelling procedure.

A method to optimise statistical adjustment for confound-
ing by indication in non-experimental studies, notably when
the number of prognostic variables is large, has been proposed
by Rubin and Rosenbaum. They introduced the “propensity
score” method.17 25–27 This score is the conditional probability of
exposure to a treatment given a set of observed variables that
may influence the decision to vaccinate. The propensity score
can be derived from a multivariable logistic regression analy-
sis in which those variables that are statistically significant
associated with exposure (for example, vaccination) are
included. Obviously, the outcome variable should not be
included as a covariate. A higher score indicates a higher
probability of receiving the vaccine. Subclassification of
subjects on levels of this single variable or including this vari-
able as a single covariate in a multivariable regression model
tends to balance all of the observed variables, but not the
unobserved.17 25–27 The use of this score and matched sampling
will also implicitly incorporate any interactions among
confounders. Thus, this technique enables the investigator to
assess the association of vaccination with specific outcomes in
patients with a more or less equal probability of receiving the
vaccine. Discriminant matching for multivariate normal
covariates as described by Cochran29 and the use of a
“confounder score” as proposed by Miettinen are related
techniques.30

To overcome the potential lack of balance on unobserved
prognostic indicators (for example, health behaviour), the
instrumental variable method has been suggested. This tech-
nique originates from the field of econometrics and has so far
not been extensively used in medical research. In short,
patients are subdivided according to levels of a covariate that
is associated with the exposure, but not associated with the

Box 1 Methods to reduce confounding by indication

Design methods
• Comparison of groups with similar prognosis (for exam-

ple “natural experiment” or use of historical controls)
• Restriction or stratification of study population (for

example, age strata, gender, current/inactive disease)
• Individual matching of exposed and non-exposed into

main prognostic strata (“quasi-experiment”)

Statistical methods
• Statistical control of confounding factors in multivariable

regression model
• Subclassification of patients on levels of the propensity

score
• Pseudo-randomisation on levels of instrumental

variables
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outcome. This pseudo-randomisation may lead to equal distri-

bution of health characteristics in both non-exposed and

exposed people and thus prevent potential confounding. For

example, McClellan et al calculated the distance to the hospi-

tal on the basis of zip codes and divided patients into those

living within a small area around the hospital and those out-

side that area in a study on cardiovascular procedures.28

Distance to the hospital did fulfill the criteria for instrumental

variables. Heart catheterisation was more prevalent in the

inner circle than the outer circle, and mortality rates were

similar. This was in contrast with their finding using conven-

tional control for confounding in which mortality rates

seemed higher in patients who underwent the surgical proce-

dure. As the validity of this second method should be

evaluated in other medical studies and instrumental variables

may be hard to identify, we will not further elaborate on this

statistical procedure.

The presence of confounding by indication in non-

experimental evaluation of influenza vaccination and some of

the above mentioned tools to reduce its impact are discussed

in more detail on the basis of data derived from a recent study

by our group.

AN EXAMPLE: INFLUENZA VACCINE
EFFECTIVENESS IN ADULT PATIENTS WITH
PULMONARY DISEASE
We examined the effect of influenza vaccine on the incidence

of influenza associated complications in 1696 adult patients

with chronic obstructive pulmonary disease (COPD) or

asthma during the 1995/96 influenza A epidemic.31 The study

was a one season prospective cohort study using the medical

database of the Utrecht General Practitioners Network. GP

patient records were reviewed for all study subjects. As a first

design approach to limit confounding by indication, vacci-

nated and non-vaccinated patients with pulmonary disease

were compared rather than vaccinated patients and controls

from the community. The study population was restricted to

those with an indication for vaccination according to the

guidelines of the Dutch Health Council. In table 1 we give

crude and adjusted effectiveness estimates using the conven-

tional control of confounding by multivariable logistic

regression analysis. Despite restriction of the study popula-

tion, crude results seem to suggest that the vaccine is ineffec-

tive and may even lead to complications (odds ratio (OR)

1.14). If the effectiveness estimate of 50% reduction that we

observed among only 630 elderly patients is hypothesised to

be present in the total study group, the size (n=1696) gives a

power over 80% to detect a reduction from 10% to 5% of com-

plications with a vaccination rate of 66%. So this cannot be

explained by lack of statistical power only. However, further

statistical adjustments notably for age, disease, and GP visits

resulted in striking changes of the effectiveness estimate to a

relative risk of 0.76 suggesting an overall vaccine effectiveness

of 24% in this population—a relative parameter change of

33%. Confounding therefore might explain the observed asso-

ciations. Addition of other covariates, including the GP, in the

final model did not substantially change the vaccine effective-

ness estimate.

Most probably the adjustments were still incomplete. More

precise measurements of disease severity such as pulmonary

function, atopy, or hyper-reactivity were not available.

Therefore, a second approach to limit confounding consisted

of subdividing the whole study population into two age strata

(>65 years, 18–64 years) in which prognosis of vaccinees and

non-vaccinees within each age stratum is less deviant (see

also table 1). Apart from issues of modification of the effects of

the vaccine by age, which is beyond the scope of this article,

with this approach, statistical adjustments for the same

confounding factors resulted in smaller relative parameter

changes of 12% and 26%, respectively, in both age categories.

Table 1 Crude and adjusted odds ratios for an acute episode of low respiratory
tract or cardiac disease or death during an influenza epidemic in vaccinees and
non-vaccinees

Study population and analysis Adjusted for: Odds ratio (95% CI)

Adult patients (18–102 y, n=1696) Crude value 1.14 (0.84 to 1.55)
Conventional control: MLR*

+ age (in years) 0.87 (0.64 to 1.20)
+ disease (asthma/COPD) 0.82 (0.59 to 1.13)
+ GP visits (in number) 0.76 (0.54 to 1.05)
+ remaining factors 0.76 (0.54 to 1.06)

Elderly patients (65–102 y, n=630) Crude value 0.57 (0.35 to 0.93)
Conventional control: MLR

+ age (in years) 0.56 (0.35 to 0.92)
+ disease (asthma/COPD) 0.53 (0.32 to 0.87)
+ GP visits (in number) 0.50 (0.30 to 0.83)
+ remaining factors 0.50 (0.29 to 0.83)

Younger patients (18–64 y, n=1066) Crude value 1.27 (0.84 to 1.94)
Conventional control: MLR

+ age (in years) 1.11 (0.73 to 1.70)
+ disease (asthma/COPD) 1.08 (0.70 to 1.66)
+ GP visits (in number) 0.94 (0.61 to 1.47)
+ remaining factors 0.94 (0.60 to 1.45)

Quasi-experiment (18–64 y, n=676) Matched crude value 0.90 (0.53 to 1.52)
Conventional control: MCLR†

+ age/ disease/GP visits 0.89 (0.52 to 1.54)
+ remaining factors

Younger patients (18–64 y, n=1066) Matched crude value 0.87 (0.56 to 1.35)
Propensity score + MCLR†

+ age/ disease/GP visits 0.86 (0.55 to 1.35)
+ remaining factors

*MLR, multivariable logistic regression analysis; †MCLR, multivariable conditional logistic regression.

Confounding by indication in non-experimental evaluation of vaccine effectiveness 953

www.jech.com

http://jech.bmj.com


This suggests that stratification or age restriction may further

reduce residual confounding. Still, inferences on the two age

subgroups should be made with caution. In the elderly popu-

lation, a substantial and statistically significant reduction in

the outcome rate was observed even without controlling for

confounding (OR 0.57, 95% confidence intervals (CI) 0.35 to

0.93). Addition of prognostic factors into the multivariate

model led to a further increase in the estimate of vaccine

effectiveness indicating some residual confounding after

stratification. However, in the working age adults the crude

odds ratio was well above 1.0 and despite adjustment for the

available prognostic indicators we could not demonstrate a

significant reduction (OR 0.94, 95% CI 0.61 to 1.47). This

suggests that results of restricted populations are not

necessarily applicable to other segments, in this case younger

patients. Also, in this segment the GP did not independently

confound the association. Although vaccination rates of the

seven group practices were somewhat different (range 56% to

68%, p=0.08), complication rates were almost similar (range

8% to 13%, p=0.24). Because Neuzil and colleagues showed

considerable impact of influenza in a younger group of

women6 and we have shown that in the Netherlands the cur-

rent influenza target group comprises at least 40% of high risk

persons under 65 years of age,32 we further examined potential

confounding in this particular age group.

As a third approach to limit potential confounding by indi-

cation in the original design, we used the data of this younger

age group (18–64 years) in a “quasi-experiment”. Firstly, we

identified the three main prognostic factors: age (five year age

category), underlying pulmonary disease (asthma or COPD)

and GP visiting rate (0, 1–2, and >3 visits). Next, we classified

each subject, vaccinated or non-vaccinated, into one of the 54

combinations of these factors. Within each stratum we then

randomly sampled from either the vaccinated or the

non-vaccinated group as many patients as were available in

the comparison group with the lowest number of subjects. For

example, if five vaccinated and two non-vaccinated patients

were between 20 and 24 years old, had asthma and consulted

the GP five times in the preceding year, we sampled two

patients at random from the exposed group to form a stratum

matched group. In all, 390 patients (37%) were excluded from

the original study population (n=1066) and 676 patients were

available for the quasi-experiment. After this matching proce-

dure it seemed that the vaccine reduced the occurrence of

outcomes by 11%, after adjustments for the main confounders

and remaining covariates (that is, health insurance, gender),

but the estimate was not statistically significant (see table 1).

Only minor changes were observed after statistical adjust-

ment, suggesting that confounding by differences in the

known prognostic factors was largely removed. A major limi-

tation may prohibit the use of the above mentioned “quasi

experiment”. Pair matching is time consuming and can

considerably reduce the power of the study as numbers of

matched patients in separate strata become small. In our

example 37% of the initial study population had to be

excluded. To avoid these issues, we finally applied analytical

control of confounding by using the “propensity score”.

In our example, we used the 1066 patients aged between 18

and 64 years to calculate the probability score of being vacci-

nated. Our final multivariable logistic regression model with

the dependent variable vaccination included age, underlying

disease, number of GP visits, gender, and health insurance. We

then categorised the propensity score into quintiles and

matched vaccinees and non-vaccinees on levels of the

probability to be vaccinated. In the multivariable conditional

logistic regression analysis we matched on the categorised

levels of the score and calculated crude and adjusted odds

ratios of vaccination for the outcome. The overall adjusted

odds ratio of 0.86 seems to suggest a 14% reduction of compli-

cations resulting from the vaccine. The finding of the “quasi-

experiment” in which stratum matched pairs of vaccinees and

non-vaccinees were compared was validated by this statistical

method. As was expected, 95% confidence intervals were

smaller, but point estimates were nearly the same. The latter

techniques changed the effectiveness estimate from a crude

estimate of −27% in the original design to 11% and 14% using

the “quasi-experiment” and “propensity score”, respectively;

relative parameter changes of more than 30%. In addition, the

propensity score method resulted in slightly smaller 95% con-

fidence intervals than the conventional adjustment. Although

our study lacked adequate power to demonstrate a statistically

significant reduction of outcomes resulting from the vaccine,

the adjusted effectiveness point estimates are compatible with

a statistically significant 11% reduction of outpatient visits for

respiratory disease in elderly lung patients as observed by

Nichol and colleagues.33

CONCLUSION
Randomised allocation of vaccine or placebo is the preferred

method to assess the effects of the vaccine on clinical

outcomes relevant to the individual patient. In the absence of

phase 3 trials using clinical end points, alternative non-

experimental designs to evaluate vaccine effects or safety are

often used. The application of these designs may, however, lead

to invalid estimates of vaccine effectiveness or safety. As

patients with poor prognosis are more likely to be immunised,

selection for vaccination is confounded by patient factors that

are also related to clinical end points. This paper describes

several design and analytical methods aimed at limiting or

preventing this confounding by indication in non-

experimental studies. In short, comparison of study groups

with similar prognosis, restriction of the study population, and

statistical adjustment for dissimilarities in prognosis are

important tools and should be considered. Only if the investi-

gator is able to show that confounding by indication is

sufficiently controlled for, results of a non-experimental study

may be of use to direct an evidence based vaccine policy.
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Key points

• In non-experimental effectiveness studies, selection for
drugs, for example, vaccination, can be confounded by
patient factors that are also related to clinical end
points.

• Comparison of similar groups, restriction, or matching
are design methods to reduce confounding by
indication.

• Regression analysis, subclassification on propensity
scores and pseudo-randomisation with instrumental
variables are statistical methods to reduce confounding
by indication.
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